23,833 research outputs found

    Bubble Growth in Superfluid 3-He: The Dynamics of the Curved A-B Interface

    Full text link
    We study the hydrodynamics of the A-B interface with finite curvature. The interface tension is shown to enhance both the transition velocity and the amplitudes of second sound. In addition, the magnetic signals emitted by the growing bubble are calculated, and the interaction between many growing bubbles is considered.Comment: 20 pages, 3 figures, LaTeX, ITP-UH 11/9

    How to identify the youngest protostars

    Get PDF
    We study the transition from a prestellar core to a Class 0 protostar, using SPH to simulate the dynamical evolution, and a Monte Carlo radiative transfer code to generate the SED and isophotal maps. For a prestellar core illuminated by the standard interstellar radiation field, the luminosity is low and the SED peaks at ~190 micron. Once a protostar has formed, the luminosity rises (due to a growing contribution from accretion onto the protostar) and the peak of the SED shifts to shorter wavelengths (~80-100 micron). However, by the end of the Class 0 phase, the accretion rate is falling, the luminosity has decreased, and the peak of the SED shifts back towards longer wavelengths (90-150 micron). In our simulations, the density of material around the protostar remains sufficiently high well into the Class 0 phase that the protostar only becomes visible in the NIR if it is displaced from the centre dynamically. Raw submm/mm maps of Class 0 protostars tend to be much more centrally condensed than those of prestellar cores. However, when convolved with a typical telescope beam, the difference in central concentration is less marked, although the Class 0 protostars appear more circular. Our results suggest that, if a core is deemed to be prestellar on the basis of having no associated IRAS source, no cm radio emission, and no outflow, but it has a circular appearance and an SED which peaks at wavelengths below ~170 micron, it may well contain a very young Class 0 protostar.Comment: Accepted by A&A (avaliable with high-res images at http://carina.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/publications

    Optically mediated nonlinear quantum optomechanics

    Full text link
    We consider theoretically the optomechanical interaction of several mechanical modes with a single quantized cavity field mode for linear and quadratic coupling. We focus specifically on situations where the optical dissipation is the dominant source of damping, in which case the optical field can be adiabatically eliminated, resulting in effective multimode interactions between the mechanical modes. In the case of linear coupling, the coherent contribution to the interaction can be exploited e.g. in quantum state swapping protocols, while the incoherent part leads to significant modifications of cold damping or amplification from the single-mode situation. Quadratic coupling can result in a wealth of possible effective interactions including the analogs of second-harmonic generation and four-wave mixing in nonlinear optics, with specific forms depending sensitively on the sign of the coupling. The cavity-mediated mechanical interaction of two modes is investigated in two limiting cases, the resolved sideband and the Doppler regime. As an illustrative application of the formal analysis we discuss in some detail a two-mode system where a Bose-Einstein condensate is optomechanically linearly coupled to the moving end mirror of a Fabry-P\'erot cavity.Comment: 11 pages, 8 figure

    Phase Variation in the Pulse Profile of SMC X-1

    Full text link
    We present the results of timing and spectral analysis of X-ray high state observations of the high-mass X-ray pulsar SMC X-1 with Chandra, XMM-Newton, and ROSAT, taken between 1991 and 2001. The source has L_X ~ 3-5 x 10^38 ergs/s, and the spectra can be modeled as a power law plus blackbody with kT_BB \~ 0.18 keV and reprocessed emission radius R_BB ~ 2 x 10^8 cm, assuming a distance of 60 kpc to the source. Energy-resolved pulse profiles show several distinct forms, more than half of which include a second pulse in the soft profile, previously documented only in hard energies. We also detect significant variation in the phase shift between hard and soft pulses, as has recently been reported in Her X-1. We suggest an explanation for the observed characteristics of the soft pulses in terms of precession of the accretion disk.Comment: 4 pages, 4 figures, accepted for publication in ApJL; v2 minor corrections, as will appear in ApJ

    Dissipation of the 3^He A-B Transition

    Full text link
    A rigorous hydrodynamic theory of the A-B transition is presented. All dissipative processes are considered. At low interface velocities, those occurring on hydrodynamic length scales, not considered hitherto, are most probably the dominant ones.Comment: 13 pages, REVTeX, 2 figures, ITP-UH 13/9

    Polarization squeezing of light by single passage through an atomic vapor

    Full text link
    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant 87^{87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous variables quantum protocols was observed. The extreme simplicity of the setup, based on standard polarization components, makes it particularly convenient for quantum information applications.Comment: Revised version. Minor changes. four pages, three figure

    Bright squeezed vacuum in a nonlinear interferometer: frequency/temporal Schmidt-mode description

    Full text link
    Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode non-classical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1) interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency spectrum of squeezed light. In this work, we present an analytical approach to the theoretical description of BSV in the frequency domain based on the Bloch-Messiah reduction and the Schmidt-mode formalism. As a special case we consider a strongly pumped SU(1,1) interferometer. We show that different moments of the radiation at its output depend on the phase, dispersion and the parametric gain in a nontrivial way, thereby providing additional insights on the capabilities of nonlinear interferometers. In particular, a dramatic change in the spectrum occurs as the parametric gain increases

    Complex light: Dynamic phase transitions of a light beam in a nonlinear non-local disordered medium

    Full text link
    The dynamics of several light filaments (spatial optical solitons) propagating in an optically nonlinear and non-local random medium is investigated using the paradigms of the physics of complexity. Cluster formation is interpreted as a dynamic phase transition. A connection with the random matrices approach for explaining the vibrational spectra of an ensemble of solitons is pointed out. General arguments based on a Brownian dynamics model are validated by the numerical simulation of a stochastic partial differential equation system. The results are also relevant for Bose condensed gases and plasma physics.Comment: 11 pages, 20 figures. Small revisions, added a referenc

    EPR-based ghost imaging using a single-photon-sensitive camera

    Get PDF
    Correlated photon imaging, popularly known as ghost imaging, is a technique whereby an image is formed from light that has never interacted with the object. In ghost imaging experiments, two correlated light fields are produced. One of these fields illuminates the object, and the other field is measured by a spatially resolving detector. In the quantum regime, these correlated light fields are produced by entangled photons created by spontaneous parametric down-conversion. To date, all correlated photon ghost imaging experiments have scanned a single-pixel detector through the field of view to obtain spatial information. However, scanning leads to poor sampling efficiency, which scales inversely with the number of pixels, N, in the image. In this work, we overcome this limitation by using a time-gated camera to record the single-photon events across the full scene. We obtain high-contrast images, 90%, in either the image plane or the far field of the photon pair source, taking advantage of the Einstein–Podolsky–Rosen-like correlations in position and momentum of the photon pairs. Our images contain a large number of modes, >500, creating opportunities in low-light-level imaging and in quantum information processing
    • …
    corecore